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In this paper we prove convergence rates for the problem of approximating
functions f by neural networks and similar constructions. We show that the rates
are the better the smoother the activation functions are, provided that f satisfies an
integral representation. We give error bounds not only in Hilbert spaces but also in
general Sobolev spaces Wm, r(W). Finally, we apply our results to a class of percep-
trons and present a sufficient smoothness condition on f guaranteeing the integral
representation. © 2001 Academic Press
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1. INTRODUCTION

The aim of this paper is to find error bounds for the approximation of
functions by feed-forward networks with a single hidden layer and a linear
output layer, which can be written as

fn(x)=C
n

j=1
cjf(x, tj), (1)

where cj ¥ R and tj ¥ P … Rp are parameters to be determined.
An important special case of (1) are so-called Ridge-constructions, i.e.,

fn(x)=C
n

j=1
cjs(a

T
j x+bj). (2)

The interest in such networks grew, since Hornik et al. [6] showed that
functions of the form (2) are dense in C(W), if s is a function of sigmoidal
form. An other special case are radial basis function networks, where
f(x, t)=k(||x−t||) (cf. [11]).



We consider the problem of approximating a function f ¥Wm, r(W),
where Wm, r(W) denote the usual Sobolev spaces and W is a (not necessarily
bounded) domain in Rd. This problem can be written in the abstract form

inf
g ¥Xn

||f−g||X, (3)

where X=Wm, r(W) and Xn denotes the set of all functions of form (1), i.e.,

Xn=3g=C
n

j=1
cjf(x, tj) : tj ¥ P … Rp, cj ¥ R4 . (4)

f is assumed smooth enough so that Xn …X; P is a (usually bounded)
domain.

Usually, the convergence of solutions of (3) if they exist (note that Xn is
not a finite-dimensional subspace of X) is arbitrarily slow, since the
approximation problem is asymptotically ill-posed, i.e., arbitrarily small
errors in the observation can lead to arbitrarily large errors in the approx-
imation as nQ. (cf., e.g., [2, 3]). It was shown in [3] that the set of
functions to which networks of the form (1) converge is just the closure of
the range of the integral operator

K: L2(P)QX, hW F
P
h(t) f( · , t) dt.

Rates are usually only obtained under additional conditions on f (cf., e.g.,
[5]). A natural condition seems to be that f is in the range of the above
operator, i.e.,

f(x)=F
P
h(t) f(x, t) dt, (5)

where h is allowed to be in L1(P) if f is smooth enough. It was shown in
[9] that under this condition the rate

inf
g ¥Xn

||f−g||L2(W)=O(n−
1
2) (6)

is obtained if f is a continuous function (see also [7, 8]). We improve this
result under additional smoothness assumptions on the basis function f in
the next section with estimates also in Hm(W)=Wm, 2(W). Moreover, we
will give error bounds in Wm, r(W) that depend on the dimension p (cf. (4)),
where the analysis is based on finite-element theory. In Section 3, we apply
the results to perceptrons and give sufficient conditions on f for condition
(5) to hold. Similar results on the unit circle have been obtained in [4, 10].
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2. ERROR BOUNDS

An inspection of the proof of (6) in [9] shows that the result can be
improved if the activation function f is Hölder continuous. Moreover,
rates can be obtained in Hm(W):

Theorem 2.1. Let Xn be defined as in (4) with P … Rp compact and f
such that

||f( · , t)−f( · , s)||Hm(W) [ c ||t−s||r, r ¥ (0, 1], c > 0, m ¥N0. (7)

Moreover, let f ¥Hm(W) satisfy (5) with h ¥ L.(P). Then we obtain the rate

inf
g ¥Xn

||f−g||Hm(W)=O(n−
1
2−
r

p).

Proof. Let P̄={t ¥ P : h(t \ 0} (note that P̄ is unique up to a set of
measure zero) and n̄ :=[n2]. Since P is bounded, it is possible to find
bounded measurable sets Pj such that

P̄=0
n̄

j=1
Pj, P0 P̄= 0

n

j=n̄+1
Pj, Pi 5 Pj={}, i ] j,

diam(Pj)=O(n−
1
p), |Pj |=O 11

n
2 .

(8)

We now define coefficients

cj :=F
Pj
h(t) dt

and probability measures

uj(t) :=˛
1
cj
h(t), t ¥ Pj,

0, otherwise,

for cj ] 0 and mj is arbitrary for cj=0.

As a direct consequence of our construction we have that

h=C
n

j=1
cjmj.
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Furthermore, we consider the variables tj ¥ P as random variables dis-
tributed with probability distribution mj. The expected value of z(t1, ..., tn)
is defined as

E[z] :=F
P
· · · F

P
z(t1, ..., tn) m1(t1) · · ·mn(tn) dt1 · · · dtn.

With cj and mj as above and f as in (5) we obtain using Fubini’s theorem
that

E 5>f− C
n

j=1
cjf( · , tj)>

2

Hm(W)

6

=||f||2Hm(W)−2 C
n

j=1
cj 7f, F

P
mj(tj) f( · , tj) dtj8

Hm(W)

+ C
n

i ] j=1
cicj 7F

P
mi(ti) f( · , ti) dti, F

P
mj(tj) f( · , tj) dtj8

Hm(W)

+C
n

j=1
c2j F

P
mj(tj) ||f( · , tj)||

2
Hm(W) dtj

=> F
P

5h(t)− C
n

j=1
cjmj(t)6 f( · , t) dt>

2

Hm(W)

+C
n

j=1
c2j 5F

P
mj(t) ||f( · , t)||

2
Hm(W) dt−> F

P
mj(t) f( · , t) dt>

2

Hm(W)

6 .

Since the first term on the right hand side vanishes, we may conclude that

E 5>f− C
n

j=1
cjf( · , tj)>

2

Hm(W)

6

=C
n

j=1
c2j C

|a| [ m
F
W

5F
P
mj(t) 1

“
|a|

“xa
f(x, t)2

2

dt

−1 F
P
mj(t)

“
|a|

“xa
f(x, t) dt2

26 dx

=C
n

j=1
c2j C

|a| [ m
F
W

5F
Pj
mj(t) 1F

Pj
mj(t) 1

“
|a|

“xa
f(x, t)

−
“
|a|

“xa
f(x, s)2 ds2

2

dt6 dx.
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Noting that h ¥ L.(P) and (8) imply that cj=O(1n), we now obtain together
with (7), (8), and the Cauchy–Schwarz inequality that

E 5>f− C
n

j=1
cjf( · , tj)>

2

Hm(W)

6

[ C
n

j=1
c2j C

|a| [ m
F
W

5 F
Pj
mj(t) F

Pj
mj(s) 1

“|a|
“xa
f(x, t)

−
“
|a|

“xa
f(x, s)2

2

ds dt6 dx

=C
n

j=1
c2j F

Pj
mj(t) F

Pj
mj(s) ||f( · , t)−f( · , s)||

2
Hm(W) ds dt

=O(n · n−2 · n−
2r
p )=O(n−1−

2r
p ).

Therefore, there exists a set of elements t̄j ¥ P such that

inf
g ¥Xn

||f−g||Hm(W) [ >f− C
n

j=1
cjf( · , t̄j)>

Hm(W)

[ 1E 5>f− C
n

j=1
cjf( · , tj)>

2

Hm(W)

621/2

=O(n−
1
2−
r

p),

where cj is as above. L

We think that the proposition above is also true if h ¥ L2(P). However,
the choice of the subsets Pj in (8) has to be more tricky, since cj=O(1n) will
no longer hold, in general.

We will now turn to other estimates in spaces Wm, r(W). The error
bounds will depend on the dimension p of P … Rp. The proofs are based on
the following results from finite-element theory (see [12]):

Let

P := X
p

i=1
[p
¯
i, p̄i] and

Pl1 · · · lp := X
p

i=1

5p
¯
i+

p̄i−p
¯
i

y
li, p

¯
i+

p̄i−p
¯
i

y
(li+1)6 , y ¥N.

Then, obviously

P= 0
li=0, ..., y−1
i=1, ..., p

Pl1 · · · lp .
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Moreover, we define for some k ¥N

tj1 · · · jp :=(tj1 · · · jp; 1, ..., jj1 · · · jp; p) ¥ Rp, tj1 · · · jp; i :=p
¯
i+

p̄i−p
¯
i

ky
ji,

ji=0, ..., ky.

(9)

Then for all kli [ ni [ k(li+1) there exists a unique polynomial function

qn1 · · · np ¥ Qk, l1 · · · lp :={q(t)=C cj1 · · · jp t
j1
1 · · · t

jp
p : 0 [ ji [ k,

1 [ i [ p, t=(t1, ..., tp) ¥ Pl1 · · · lp}
(10)

satisfying

qn1 · · · np (tj1 · · · jp )=D
p

i=1
dniji , kli [ ni, ji [ k(li+1). (11)

The function uI, defined by

uI |Pl1 · · · lp := C
kli [ jk [ k(li+1)

u(tj1 · · · jp ) qj1 · · · jp , (12)

interpolates u ¥ C(P) at the knots tj1 · · · jp , 0 [ ji [ ky, 1 [ i [ p. Note that
uI ¥ C(P) 5H1(P).

Proposition 2.1. Let P … Rp be rectangular. If u ¥Hk(P) with k > p
2 ,

then there is a constant no > 0 such that for all multiindices b with
|b|=o < k and for all li ¥ {0, ..., y−1}, i=1, ..., p, it holds that

||Db(u−uI)||L2(Pl1 · · · lp ) [ goy
−(k−o) |u|Hk(Pl1 · · · lp ). (13)

If u ¥ Ck(P), then there is a constant ḡo > 0 such that for all multiindices b
with |b|=o < k and for all li ¥ {0, ..., y−1}, i=1, ..., p, it holds that,

||Db(u−uI)||L.(Pl1 · · · lp ) [ ḡoy
−(k−o) max

|c|=k
||Dcu||L.(Pl1 · · · lp ). (14)

Proof. The proof follows with Theorem 3.1 and Theorem 3.3 in [12].
L
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For our main result we need the following types of smoothness of
f: f ¥Wm, r(W, Y) with Y=Hk(P) or Y=Ck(P) and norms

||f||Wm, r(W, Y) :=˛
1 C
|a| [ m

F
W

> “ |a|
“xa
f(x, · )>

r

Y
dx2

1
r

, if 1 [ r <.,

max
|a| [ m

ess sup
x ¥ W

> “ |a|
“xa
f(x, · )>

Y
, if r=..

Theorem 2.2. Let Xn be defined as in (4) with P … Rp bounded and
rectangular and let f ¥Wm, r(W, Y) with Y=Hk(P), k >

p
2 , or Y=Ck(P).

Moreover, let f ¥Wm, r(W) satisfy (5) with h ¥ L2(P) if Y=Hk(P) and
h ¥ L1(P) if Y=Ck(P). Then we obtain the rate

inf
g ¥Xn

||f−g||Wm, r(W)=O(n−
k
p).

Proof. If we choose cj as

cj :=F
P
h(t) cj(t) dt, cj ¥ L.(P),

with h as in (5), then we obtain that

>f− C
n

j=1
cjf( · , tj)>

Wm, r(W)

=> F
P
h(t) 1f( · , t)− C

n

j=1
ci(t) f( · , tj)2 dt>

Wm, r(W)
.

Let us define y :=([n1/p]−1)/k and n̄ :=(ky+1)p [ n. Then we choose tj
and cj as follows: For j=n̄+1, ..., n let tj be arbitrary and cj — 0. For
j=1, ..., n̄ let tj and cj be the appropriate knots and basis functions such
that the sum above equals the interpolating function fI( · , t) (see (9)–(12)),
i.e.,

>f− C
n

j=1
cjf( · , tj)>

Wm, r(W)
=> F

P
h(t)(f( · , t)−fI( · , t)) dt>

Wm, r(W)
.

Note that this interpolating property also holds for all derivatives of f with
respect to x, since the interpolation is done with respect to t only and holds
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independently of x. Applying (13) (b=0) for Y=Hk(P) and (14) (b=0)
for Y=Ck(P) we obtain the estimates

>f− C
n

j=1
cjf( · , tj)>

Wm, r(W)
[ g0y

−k ||h||L2(P) ||f||Wm, r(W, Hk(P)) (15)

and

>f− C
n

j=1
cjf( · , tj)>

Wm, r(W)
[ ḡ0y

−k ||h||L2(P) ||f||Wm, r(W, Ck(P)) (16)

respectively. Now the assertion follows together with the fact that y ’ n
1
p.
L

Remark 2.1. The idea of choosing cj, tj and cj as in the prove above
was found in a paper by Wahba [13] for one-dimensional P. This idea was
extended to higher dimensions, i.e., P … Rp.

The following extensions of Theorem 2.2 are obvious from the proof:

• If P is not rectangular but supp(h) … P̄ … P with P̄ rectangular, then
the results are still valid.

• If Y=Ck(P), the condition (5) for f with h ¥ L1(P) may be replaced
by: f is such that there exists a uniformly bounded sequence hl in L1(P)
with

>f−F
P
hl(t) f( · , t) dt>

Wm, r(W)
Q 0 as lQ..

• Condition (5) may be generalized to

f(x)= C
|a| [ o

F
P
hb(t)

“
|b|

“tb
f(x, t) dt, o < k. (17)

If the functions cj are chosen such that for each b they coincide with the
appropriate derivative of the basis functions qj1 · · · jp in Pl1 · · · lp , we obtain
together with Proposition 2.1 the rates

inf
g ¥Xn

||f−g||Wm, r(W)=O(n−
(k−o)
p ).

Finally, we want to mention that the rates above and in Theorem 2.2
decrease with increasing dimension p. There is no dimensionless term like
n−

1
2 in (6) or Theorem 2.1. Since the estimates in the proof of Theorem 2.2

are based on a fixed choice of knots tj this dependence on p is to be
expected. We were not able to improve the rates for a possible optimal
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choice of knots. However, since Proposition 2.1 is valid also for many
other non-uniform choices of knots tj, the rates in Theorem 2.2 are
valid for many choices tj (also non-optimal ones) if at least cj is chosen
optimally.

3. APPLICATIONS TO PERCEPTRONS

We now apply the results of the previous section to perceptrons with
a single hidden layer, namely Ridge- constructions (cf. (2)) where s is a
function of sigmoidal form, i.e.,

Xn=3g=C
n

j=1
cjs(a

T
j x+bj) : aj ¥ A … Rd, bj ¥ B … R4

and s is piecewise continuous, monotonically increasing, and such that

lim
tQ −.

s(t)=0 and lim
tQ+.

s(t)=1.

If s is such that

s(t) :=˛
1, t > 1,

p(t), −1 [ t [ 1,

0, t < −1,

(18)

with p the unique polynomial of degree 2k+1 satisfying

p(−1)=0, p(1)=1, and p (l)(−1)=0=p(l)(1), 1 [ l [ k, (19)

then s ¥ Ck, 1 and s ¥Wk+1, s (see Fig. 1).

Example 3.1. Let us consider the special case of k=0, i.e.,

s(t) :=˛
1, t > 1,
t+1
2

, −1 [ t [ 1,

0, t < −1,

(20)

and let A := X
d

i=1
[− āi, āi] and B :=[−b̄, b̄] with āi > 0 and b̄ > 0 such that

-a ¥ A -x ¥ W : |aTx| [ b̄−1.
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FIG. 1. Function s from (18) and (19) for k=0, 1, 2, 3.

Since f(x, a, b) :=s(aTx+b) satisfies (7) with m=0 and r=1, Theo-
rem 2.1 implies that

inf
g ¥Xn

||f−g||L2(W)=O(n−
1
2−

1
d+1)

if

rclf(x)=F
A
F
b̄

−b̄
h(a, b) s(aTx+b) db da

=F
A

5F 1−a
Tx

−1−aTx
h(a, b)

1+aTx+b
2

db+F
b̄

1−aTx
h(a, b) db6 da (21)

for some h ¥ L.(A×B).

Example 3.2. We consider now the general case, where s is defined by
(18), (19), and where A and B are as in Example 3.1.
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Since f(x, a, b) :=s(aTx+b) satisfies that f ¥Wm,.(W, Ck−m(A×B))
(m [ k) and f ¥Wm,.(W, Hk+1−m(A×B)) (m [ k+1), we may apply
Theorem 2.2 to obtain

inf
g ¥Xn

||f−g||Wm, r(W)=O(n−
k−m
d+1)

if f ¥Wm, r(W) satisfies

f(x)=F
A

5F 1−a
Tx

−1−aTx
h(a, b) p(aTx+b) db+F

b̄

1−aTx
h(a, b) db6 da (22)

for some h ¥ L1(A×B) and

inf
g ¥Xn

||f−g||Wm, r(W)=O(n−
k+1−m
d+1 )

if f ¥Wm, r(W) satisfies (22) for some h ¥ L2(A×B) and k+1−m > d+1
2 .

Note that for m=0 and k > d+1
2 the rate above is better than the one in

Example 3.1.
From both examples, we can see that the conditions (21) and (22) can be

only satisfied if f is several times differentiable. We will now give a suffi-
cient condition on f that guarantees (21):

Let e0 :=0 and en :=
p
2 (4n

j−3), n ¥N, for some j ¥N to be specified
later, and let rn :=en/en+1. We define the function h as

h(a, b)=C
.

n=1
(on(a) cos(ben)+ln(a) sin(ben)), (23)

where

on(a) :=˛
−(2p)−

d
2 e3nIf̂(aen), if a ¥ A0rn−1A,

0, else,

ln(a) :=˛
(2p)−

d
2 e3nRf̂(aen), if a ¥ A0rn−1A,

0, else.

(24)

Note that, due to the definition of on and ln, the sum in (23) will be almost
always finite. I and R denote the imaginary and real part, respectively.
The definition of on and ln seem rather technical. It will become clear from
the proofs of Lemma 3.1 and Proposition 3.1. With f̂ we denote the
Fourier transform of any function f̃ satisfying that f̃=f in W.
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Lemma 3.1. Let f be such that (1+| · |3+a−1/p) f̂( · ) ¥ Lp(Rd), where f̂ is
as above and a=0 for p=1 and a > 0 for 1 < p [., and let A and B be as
in Example 3.1. Then it holds for h defined by (23) and (24) with j ¥N
sufficiently large (see the definition of en) that

h ¥ Lp(A×B).

Proof. Let p <.. Then we obtain with (23) and (24) that

F
A
F
b̄

−b̄
|h(a, b)|p db da

=C
.

k=1
F
rkA0rk−1A

F
b̄

−b̄

: C
k

n=1
(on(a) cos(ben)+ln(a) sin(ben)) :

p

db da

[ 2b̄ C
.

k=1
F
rkA0rk−1A

1 C
k

n=1
(|on(a)|+|ln(a)|)2

p

da

=O 1 C
.

k=1
F
rkA0rk−1A

1 C
k

n=1
e3n |f̂(aen)|2

p

da2 .

This together with the estimate

1 C
k

n=1
e3n |f̂(aen)|2

p

[ 1 C
k

n=1
e (3+a) pn |f̂(aen)|p2 1 C

k

n=1
e−

ap
p−1
n
2p−1

and the fact that

C
.

n=1
e−

ap
p−1
n <.,

if a > 0, p > 1, and 1 >
p−1
ap , implies that

F
A
F
b̄

−b̄
|h(a, b)|p db da=O 1 C

.

n=1
F
A0rn−1A

e (3+a) pn |f̂(aen)|p da2

=O 1 C
.

n=1
F
enA0en−1A

e (3+a) p−1n |f̂(z)|p dz2

if j is sufficiently large and a=0 for p=1 and a > 0 for p > 1 which we
assume to hold in the following. Since

,C > 0 -z ¥ enA0en−1A : e (3+a) p−1n [ C(1+|z|3+a−
1
p)p,
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we finally obtain that

F
A
F
b̄

−b̄
|h(a, b)|p db da=O 1 C

.

n=1
F
enA0en−1A

(1+|z|3+a−
1
p)p |f̂(z)|p dz2

=O 1 F
R
d
(1+|z|3+a−

1
p)p |f̂(z)|p dz2 .

This proves the assertion for p <..
Let us now consider the case p=.: We assume that a > 0 and that j > 1

a.
Then we obtain for all a ¥ rkA0rk−1A that

|h(a, b)| [ C
k

n=1
(|on(a)|+|ln(a)|)

=O 1 C
k

n=1
e3n |f̂(aen)|2

=O 1 C
k

n=1
(1+(|a| en)3+a) e

−a
n |f̂(aen)|2

=O(||(1+| · |3+a) f̂( · )||L.(Rd)).

This proves the assertion for p=.. L

Proposition 3.1. Let f, A, and B satisfy the conditions in Lemma 3.1.
Moreover, let f be such that (1+| · |) f̂( · ) ¥ L1(Rd). Then f has an integral
representation (21) for some h ¥ Lp(A×B).

Proof. With the special choice of h as in (23) and (24) we know from
Lemma 3.1 that h ¥ Lp(A×B). We will now show that

g(x) :=F
A

5F 1−a
Tx

−1−aTx
h(a, b)

1+aTx+b
2

db+F
b̄

1−aTx
h(a, b) db6 da

= C
.

k=1
F
rkA0rk−1A

C
k

n=1

5on(a) 1F
1−aTx

−1−aTx
cos(ben)

1+aTx+b
2

db

+F
b̄

1−aTx
cos(ben) db2

+ln(a) 1F
1−aTx

−1−aTx
sin(ben)

1+aTx+b
2

db

+F
b̄

1−aTx
sin(ben) dt26 da
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is identical to f up to a constant. The integrals with respect to b may be
calculated analytically. Together with sin(en)=1 this yields that

g(x)=C
.

k=1
F
rkA0rk−1A

C
k

n=1
[on(a)(e

−1
n sin(b̄en)+e

−2
n sin(aTxen))

+ln(a)(−e
−1
n cos(b̄en)+e

−2
n cos(aTxen))] da

=(2p)−
d
2 C
.

n=1
F
enA0en−1A

(Rf̂(z) cos(zTx)−If̂(z) sin(zTx)) dz

−(2p)−
d
2 C
.

n=1
F
enA0en−1A

en(Rf̂(z) cos(b̄en)+If̂(z) sin(b̄en)) dz.

The second term above is a constant, since (1+| · |) f̂( · ) ¥ L1(Rd). (The
proof is similar to the one in Lemma 3.1.) We denote this constant by C in
the following. Hence, we obtain that

g(x)=(2p)−
d
2 F

R
d
(Rf̂(z) cos(zTx)−If̂(z) sin(zTx)) dz+C

=(2p)−
d
2 F

R
d
f̂(z) e iz

Tx dz+C

=f(x)+C.

It remains to be shown that the constant function satisfies (21) for some
h̄ ¥ L.(A×B). Let h̄(a, b) := C

b̄ |A|
. Then we obtain that

F
A

5F 1−a
Tx

−1−aTx
h̄(a, b)

1+aTx+b
2

db+F
b̄

1−aTx
h̄(a, b) db6 da

=
C

b̄ |A|
F
A
(b̄+aTx) da=C,

where we used the fact that

F
A
aTx da=0

for the special choice of A (see Example 3.1). L

Remark 3.1. For the case p=1, the condition (1+| · |) f̂( · ) ¥ L1(Rd) in
Proposition 3.1 is superfluous, since it is implied by condition (1+| · |2) f̂( · ) ¥
L1(Rd) in Lemma 3.1. This sufficient condition for (21) actually means that
f has a C2-extension into the exterior of W. On the other hand, it is easy to
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see that for condition (21) to hold it is necessary that f is two-times weakly
differentiable.

For the case p=2, the conditions in Proposition 3.1 mean that f has a
C1-extension into the exterior of W and that f may be extended to a func-
tion in H

5
2+a(Rd) for some a > 0.

For the general case of perceptrons (k ¥N) in Example 3.2, one can
prove a similar result to Proposition 3.1 by constructing the function h in
Lemma 3.1 similarly to (23) and (24). The sufficient conditions for (22) to
hold are:

(1+| · |) f̂( · ) ¥ L1(Rd) and (1+| · |3+k+a−
1
p) f̂( · ) ¥ Lp(Rd).

It was shown in [1] that (1+| · |) f̂( · ) ¥ L1(Rd) is sufficient for the rate

inf
g ¥Xn

||f−g||L2(W)=O(n−1/2)

if P=Rd+1. It is obvious that better rates can only be obtained under
stronger conditions on f. Unfortunately, the rates in Theorem 2.2 are only
better than O(n−

1
2) if k is sufficiently large depending on the dimension d.

On the other hand, the rates in Theorem 2.2 are also valid for non-
optimally chosen {tj} (compare Remark 2.1).
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