Error Bounds for Approximation with Neural Networks

Martin Burger ${ }^{1}$ and Andreas Neubauer
Institute for Industrial Mathematics, Johannes-Kepler University, A-4040 Linz, Austria E-mail: burger@indmath.uni-linz.ac.at, neubauer@indmath.uni-linz.ac.at

Communicated by Robert Schaback

Received May 14, 2000; accepted in revised form June 14, 2001

In this paper we prove convergence rates for the problem of approximating functions f by neural networks and similar constructions. We show that the rates are the better the smoother the activation functions are, provided that f satisfies an integral representation. We give error bounds not only in Hilbert spaces but also in general Sobolev spaces $W^{m, r}(\Omega)$. Finally, we apply our results to a class of perceptrons and present a sufficient smoothness condition on f guaranteeing the integral representation. © 2001 Academic Press

Key Words: neural networks; error bounds; nonlinear function approximation.

1. INTRODUCTION

The aim of this paper is to find error bounds for the approximation of functions by feed-forward networks with a single hidden layer and a linear output layer, which can be written as

$$
\begin{equation*}
f_{n}(x)=\sum_{j=1}^{n} c_{j} \phi\left(x, t_{j}\right), \tag{1}
\end{equation*}
$$

where $c_{j} \in \mathbb{R}$ and $t_{j} \in P \subset \mathbb{R}^{p}$ are parameters to be determined.
An important special case of (1) are so-called Ridge-constructions, i.e.,

$$
\begin{equation*}
f_{n}(x)=\sum_{j=1}^{n} c_{j} \sigma\left(a_{j}^{T} x+b_{j}\right) \tag{2}
\end{equation*}
$$

The interest in such networks grew, since Hornik et al. [6] showed that functions of the form (2) are dense in $C(\Omega)$, if σ is a function of sigmoidal form. An other special case are radial basis function networks, where $\phi(x, t)=\psi(\|x-t\|)(c f .[11])$.

[^0]We consider the problem of approximating a function $f \in W^{m, r}(\Omega)$, where $W^{m, r}(\Omega)$ denote the usual Sobolev spaces and Ω is a (not necessarily bounded) domain in \mathbb{R}^{d}. This problem can be written in the abstract form

$$
\begin{equation*}
\inf _{g \in X_{n}}\|f-g\|_{X} \tag{3}
\end{equation*}
$$

where $X=W^{m, r}(\Omega)$ and X_{n} denotes the set of all functions of form (1), i.e.,

$$
\begin{equation*}
X_{n}=\left\{g=\sum_{j=1}^{n} c_{j} \phi\left(x, t_{j}\right): t_{j} \in P \subset \mathbb{R}^{p}, c_{j} \in \mathbb{R}\right\} \tag{4}
\end{equation*}
$$

ϕ is assumed smooth enough so that $X_{n} \subset X ; P$ is a (usually bounded) domain.

Usually, the convergence of solutions of (3) if they exist (note that X_{n} is not a finite-dimensional subspace of X) is arbitrarily slow, since the approximation problem is asymptotically ill-posed, i.e., arbitrarily small errors in the observation can lead to arbitrarily large errors in the approximation as $n \rightarrow \infty$ (cf., e.g., [2, 3]). It was shown in [3] that the set of functions to which networks of the form (1) converge is just the closure of the range of the integral operator

$$
K: L^{2}(P) \rightarrow X, \quad h \mapsto \int_{P} h(t) \phi(\cdot, t) d t .
$$

Rates are usually only obtained under additional conditions on f (cf., e.g., [5]). A natural condition seems to be that f is in the range of the above operator, i.e.,

$$
\begin{equation*}
f(x)=\int_{P} h(t) \phi(x, t) d t \tag{5}
\end{equation*}
$$

where h is allowed to be in $L^{1}(P)$ if ϕ is smooth enough. It was shown in [9] that under this condition the rate

$$
\begin{equation*}
\inf _{g \in X_{n}}\|f-g\|_{L^{2}(\Omega)}=\mathcal{O}\left(n^{-\frac{1}{2}}\right) \tag{6}
\end{equation*}
$$

is obtained if ϕ is a continuous function (see also [7, 8]). We improve this result under additional smoothness assumptions on the basis function ϕ in the next section with estimates also in $H^{m}(\Omega)=W^{m, 2}(\Omega)$. Moreover, we will give error bounds in $W^{m, r}(\Omega)$ that depend on the dimension p (cf. (4)), where the analysis is based on finite-element theory. In Section 3, we apply the results to perceptrons and give sufficient conditions on f for condition (5) to hold. Similar results on the unit circle have been obtained in [4, 10].

2. ERROR BOUNDS

An inspection of the proof of (6) in [9] shows that the result can be improved if the activation function ϕ is Hölder continuous. Moreover, rates can be obtained in $H^{m}(\Omega)$:

Theorem 2.1. Let X_{n} be defined as in (4) with $P \subset \mathbb{R}^{p}$ compact and ϕ such that

$$
\begin{equation*}
\|\phi(\cdot, t)-\phi(\cdot, s)\|_{H^{m}(\Omega)} \leqslant c\|t-s\|^{\rho}, \quad \rho \in(0,1], c>0, m \in \mathbb{N}_{0} . \tag{7}
\end{equation*}
$$

Moreover, let $f \in H^{m}(\Omega)$ satisfy (5) with $h \in L^{\infty}(P)$. Then we obtain the rate

$$
\inf _{g \in X_{n}}\|f-g\|_{H^{m}(\Omega)}=\mathcal{O}\left(n^{-\frac{1}{2}-\frac{\rho}{p}}\right) .
$$

Proof. Let $\bar{P}=\{t \in P: h(t \geqslant 0\}$ (note that \bar{P} is unique up to a set of measure zero) and $\bar{n}:=\left[\begin{array}{c}n \\ 2\end{array}\right]$. Since P is bounded, it is possible to find bounded measurable sets P_{j} such that

$$
\begin{gather*}
\bar{P}=\bigcup_{j=1}^{\bar{n}} P_{j}, \quad P \backslash \bar{P}=\bigcup_{j=\bar{n}+1}^{n} P_{j}, \quad P_{i} \cap P_{j}=\{ \}, i \neq j, \\
\operatorname{diam}\left(P_{j}\right)=\mathcal{O}\left(n^{-\frac{1}{p}}\right), \quad\left|P_{j}\right|=\mathcal{O}\left(\frac{1}{n}\right) . \tag{8}
\end{gather*}
$$

We now define coefficients

$$
c_{j}:=\int_{P_{j}} h(t) d t
$$

and probability measures
$u_{j}(t):=\left\{\begin{array}{ll}\frac{1}{c_{j}} h(t), & t \in P_{j}, \\ 0, & \text { otherwise },\end{array} \quad\right.$ for $c_{j} \neq 0$ and μ_{j} is arbitrary for $c_{j}=0$.
As a direct consequence of our construction we have that

$$
h=\sum_{j=1}^{n} c_{j} \mu_{j} .
$$

Furthermore, we consider the variables $t_{j} \in P$ as random variables distributed with probability distribution μ_{j}. The expected value of $z\left(t_{1}, \ldots, t_{n}\right)$ is defined as

$$
E[z]:=\int_{P} \cdots \int_{P} z\left(t_{1}, \ldots, t_{n}\right) \mu_{1}\left(t_{1}\right) \cdots \mu_{n}\left(t_{n}\right) d t_{1} \cdots d t_{n} .
$$

With c_{j} and μ_{j} as above and f as in (5) we obtain using Fubini's theorem that

$$
\begin{aligned}
E[\| f & \left.-\sum_{j=1}^{n} c_{j} \phi\left(\cdot, t_{j}\right) \|_{H^{m}(\Omega)}^{2}\right] \\
= & \|f\|_{H^{m}(\Omega)}^{2}-2 \sum_{j=1}^{n} c_{j}\left\langle f, \int_{P} \mu_{j}\left(t_{j}\right) \phi\left(\cdot, t_{j}\right) d t_{j}\right\rangle_{H^{m}(\Omega)} \\
& +\sum_{i \neq j=1}^{n} c_{i} c_{j}\left\langle\int_{P} \mu_{i}\left(t_{i}\right) \phi\left(\cdot, t_{i}\right) d t_{i}, \int_{P} \mu_{j}\left(t_{j}\right) \phi\left(\cdot, t_{j}\right) d t_{j}\right\rangle_{H^{m}(\Omega)} \\
& +\sum_{j=1}^{n} c_{j}^{2} \int_{P} \mu_{j}\left(t_{j}\right)\left\|\phi\left(\cdot, t_{j}\right)\right\|_{H^{m}(\Omega)}^{2} d t_{j} \\
= & \left\|\int_{P}\left[h(t)-\sum_{j=1}^{n} c_{j} \mu_{j}(t)\right] \phi(\cdot, t) d t\right\|_{H^{m}(\Omega)}^{2} \\
& +\sum_{j=1}^{n} c_{j}^{2}\left[\int_{P} \mu_{j}(t)\|\phi(\cdot, t)\|_{H^{m}(\Omega)}^{2} d t-\left\|\int_{P} \mu_{j}(t) \phi(\cdot, t) d t\right\|_{H^{m}(\Omega)}^{2}\right]
\end{aligned}
$$

Since the first term on the right hand side vanishes, we may conclude that

$$
\begin{aligned}
E\left[\| f-\sum_{j=1}^{n} c_{j} \phi\left(\cdot, t_{j}\right)\right. & \left.\|_{H^{m}(\Omega)}^{2}\right] \\
=\sum_{j=1}^{n} c_{j}^{2} \sum_{|\alpha| \leqslant m} \int_{\Omega} & {\left[\int_{P} \mu_{j}(t)\left(\frac{\partial^{|\alpha|}}{\partial x^{\alpha}} \phi(x, t)\right)^{2} d t\right.} \\
& \left.\quad\left(\int_{P} \mu_{j}(t) \frac{\partial^{|\alpha|}}{\partial x^{\alpha}} \phi(x, t) d t\right)^{2}\right] d x \\
=\sum_{j=1}^{n} c_{j}^{2} \sum_{|\alpha| \leqslant m} \int_{\Omega}[& {\left[\int _ { P _ { j } } \mu _ { j } (t) \left(\int _ { P _ { j } } \mu _ { j } (t) \left(\frac{\partial^{|\alpha|}}{\partial x^{\alpha}} \phi(x, t)\right.\right.\right.} \\
& \left.\left.\left.\quad \frac{\partial^{|\alpha|}}{\partial x^{\alpha}} \phi(x, s)\right) d s\right)^{2} d t\right] d x .
\end{aligned}
$$

Noting that $h \in L^{\infty}(P)$ and (8) imply that $c_{j}=\mathcal{O}\left(\frac{1}{n}\right)$, we now obtain together with (7), (8), and the Cauchy-Schwarz inequality that

$$
\begin{aligned}
& E\left[\left\|f-\sum_{j=1}^{n} c_{j} \phi\left(\cdot, t_{j}\right)\right\|_{H^{m}(\Omega)}^{2}\right] \\
& \leqslant \sum_{j=1}^{n} c_{j}^{2} \sum_{|\alpha| \leqslant m} \int_{\Omega}\left[\int _ { P _ { j } } \mu _ { j } (t) \int _ { P _ { j } } \mu _ { j } (s) \left(\frac{\partial|\alpha|}{\partial x^{\alpha}} \phi(x, t)\right.\right. \\
& \left.\left.-\frac{\partial^{|\alpha|} \mid}{\partial x^{\alpha}} \phi(x, s)\right)^{2} d s d t\right] d x \\
& =\sum_{j=1}^{n} c_{j}^{2} \int_{P_{j}} \mu_{j}(t) \int_{P_{j}} \mu_{j}(s)\|\phi(\cdot, t)-\phi(\cdot, s)\|_{H^{m}(\Omega)}^{2} d s d t \\
& =\mathcal{O}\left(n \cdot n^{-2} \cdot n^{-\frac{2 p}{p}}\right)=\mathcal{O}\left(n^{-1-\frac{2 p}{p}}\right) \text {. }
\end{aligned}
$$

Therefore, there exists a set of elements $\bar{t}_{j} \in P$ such that

$$
\begin{aligned}
\inf _{g \in X_{n}}\|f-g\|_{H^{m}(\Omega)} & \leqslant\left\|f-\sum_{j=1}^{n} c_{j} \phi\left(\cdot, \bar{t}_{j}\right)\right\|_{H^{m}(\Omega)} \\
& \leqslant\left(E\left[\left\|f-\sum_{j=1}^{n} c_{j} \phi\left(\cdot, t_{j}\right)\right\|_{H^{m}(\Omega)}^{2}\right]\right)^{1 / 2} \\
& =\mathcal{O}\left(n^{-\frac{1}{2}-\frac{\rho}{p}}\right),
\end{aligned}
$$

where c_{j} is as above.
We think that the proposition above is also true if $h \in L^{2}(P)$. However, the choice of the subsets P_{j} in (8) has to be more tricky, since $c_{j}=\mathcal{O}\left(\frac{1}{n}\right)$ will no longer hold, in general.

We will now turn to other estimates in spaces $W^{m, r}(\Omega)$. The error bounds will depend on the dimension p of $P \subset \mathbb{R}^{p}$. The proofs are based on the following results from finite-element theory (see [12]):

Let

$$
\begin{aligned}
P & :=X_{i=1}^{p}\left[\underline{p}_{i}, \bar{p}_{i}\right] \quad \text { and } \\
P_{l_{1} \cdots l_{p}} & :=X_{i=1}^{p}\left[\underline{p_{i}}+\frac{\bar{p}_{i}-\underline{p}_{i}}{\tau} l_{i}, \underline{p}_{i}+\frac{\bar{p}_{i}-\underline{p}_{i}}{\tau}\left(l_{i}+1\right)\right], \quad \tau \in \mathbb{N} .
\end{aligned}
$$

Then, obviously

$$
P=\bigcup_{\substack{l_{i}=0, \ldots, \tau-1 \\ i=1, \ldots, p}} P_{l_{1} \cdots l_{p} .} .
$$

Moreover, we define for some $k \in \mathbb{N}$

$$
\begin{array}{ll}
t_{j_{1} \cdots j_{p}}:=\left(t_{j_{1} \cdots j_{p} ; 1}, \ldots, j_{j_{1} \cdots j_{p} ; p}\right) \in \mathbb{R}^{p}, \quad & t_{j_{1} \cdots j_{p} ; i}:=\underline{p}_{i}+\frac{\bar{p}_{i}-\underline{p}_{i}}{k \tau} j_{i}, \tag{9}\\
& j_{i}=0, \ldots, k \tau .
\end{array}
$$

Then for all $k l_{i} \leqslant v_{i} \leqslant k\left(l_{i}+1\right)$ there exists a unique polynomial function

$$
\begin{align*}
q_{v_{1} \cdots v_{p}} \in Q_{k, l_{1} \cdots l_{p}}:= & \left\{q(t)=\sum c_{j_{1} \cdots j_{p}} t_{1}^{j_{1}} \cdots t_{p}^{j_{p}}: 0 \leqslant j_{i} \leqslant k,\right. \tag{10}\\
& \left.1 \leqslant i \leqslant p, t=\left(t_{1}, \ldots, t_{p}\right) \in P_{l_{1} \cdots l_{p}}\right\}
\end{align*}
$$

satisfying

$$
\begin{equation*}
q_{v_{1} \cdots v_{p}}\left(t_{j_{1} \cdots j_{p}}\right)=\prod_{i=1}^{p} \delta_{v_{i j i}}, k l_{i} \leqslant v_{i}, j_{i} \leqslant k\left(l_{i}+1\right) . \tag{11}
\end{equation*}
$$

The function u_{I}, defined by

$$
\begin{equation*}
\left.u_{I}\right|_{P_{l_{1} \cdots l_{p}}}:=\sum_{k l_{i} \leqslant j_{k} \leqslant k\left(l_{i}+1\right)} u\left(t_{j_{1} \cdots j_{p}}\right) q_{j_{1} \cdots j_{p}}, \tag{12}
\end{equation*}
$$

interpolates $u \in C(P)$ at the knots $t_{j_{1} \cdots j_{p}}, 0 \leqslant j_{i} \leqslant k \tau, 1 \leqslant i \leqslant p$. Note that $u_{I} \in C(P) \cap H^{1}(P)$.

Proposition 2.1. Let $P \subset \mathbb{R}^{p}$ be rectangular. If $u \in H^{k}(P)$ with $k>\frac{p}{2}$, then there is a constant $n_{\kappa}>0$ such that for all multiindices β with $|\beta|=\kappa<k$ and for all $l_{i} \in\{0, \ldots, \tau-1\}, i=1, \ldots, p$, it holds that

$$
\begin{equation*}
\left\|D^{\beta}\left(u-u_{I}\right)\right\|_{L^{2}\left(P_{\left.l_{1} \ldots l_{p}\right)}\right)} \leqslant \eta_{\kappa} \tau^{-(k-\kappa)}|u|_{H^{k}\left(P_{l_{1} \ldots I_{p}}\right)} . \tag{13}
\end{equation*}
$$

If $u \in C^{k}(P)$, then there is a constant $\bar{\eta}_{k}>0$ such that for all multiindices β with $|\beta|=\kappa<k$ and for all $l_{i} \in\{0, \ldots, \tau-1\}, i=1, \ldots, p$, it holds that,

$$
\begin{equation*}
\left\|D^{\beta}\left(u-u_{I}\right)\right\|_{L^{\infty}\left(P_{l_{1} \ldots I_{p}}\right)} \leqslant \bar{\eta}_{k} \tau^{-(k-\kappa)} \max _{|y|=k}\left\|D^{\gamma} u\right\|_{L^{\infty}\left(P_{l_{1} \cdots I_{p}}\right)} . \tag{14}
\end{equation*}
$$

Proof. The proof follows with Theorem 3.1 and Theorem 3.3 in [12].

For our main result we need the following types of smoothness of $\phi: \phi \in W^{m, r}(\Omega, Y)$ with $Y=H^{k}(P)$ or $Y=C^{k}(P)$ and norms

$$
\|\phi\|_{W^{m, r}(\Omega, Y)}:= \begin{cases}\left(\sum_{|\alpha| \leqslant m} \int_{\Omega}\left\|\frac{\partial^{|\alpha|}}{\partial x^{\alpha}} \phi(x, \cdot)\right\|_{Y}^{r} d x\right)^{\frac{1}{r}}, & \text { if } \quad 1 \leqslant r<\infty, \\ \max _{|\alpha| \leqslant m} \text { ess } \sup _{x \in \Omega}\left\|\frac{\partial^{|\alpha|}}{\partial x^{\alpha}} \phi(x, \cdot)\right\|_{Y}, & \text { if } \quad r=\infty .\end{cases}
$$

Theorem 2.2. Let X_{n} be defined as in (4) with $P \subset \mathbb{R}^{p}$ bounded and rectangular and let $\phi \in W^{m, r}(\Omega, Y)$ with $Y=H^{k}(P), k>\frac{p}{2}$, or $Y=C^{k}(P)$. Moreover, let $f \in W^{m, r}(\Omega)$ satisfy (5) with $h \in L^{2}(P)$ if $Y=H^{k}(P)$ and $h \in L^{1}(P)$ if $Y=C^{k}(P)$. Then we obtain the rate

$$
\inf _{g \in X_{n}}\|f-g\|_{W^{m, r}(\Omega)}=\mathcal{O}\left(n^{-\frac{k}{p}}\right) .
$$

Proof. If we choose c_{j} as

$$
c_{j}:=\int_{P} h(t) \gamma_{j}(t) d t, \quad \gamma_{j} \in L^{\infty}(P),
$$

with h as in (5), then we obtain that

$$
\begin{aligned}
\| f- & \sum_{j=1}^{n} c_{j} \phi\left(\cdot, t_{j}\right) \|_{W^{m, r}(\Omega)} \\
& =\left\|\int_{P} h(t)\left(\phi(\cdot, t)-\sum_{j=1}^{n} \gamma_{i}(t) \phi\left(\cdot, t_{j}\right)\right) d t\right\|_{W^{m, r}(\Omega)} .
\end{aligned}
$$

Let us define $\tau:=\left(\left[n^{1 / p}\right]-1\right) / k$ and $\bar{n}:=(k \tau+1)^{p} \leqslant n$. Then we choose t_{j} and γ_{j} as follows: For $j=\bar{n}+1, \ldots, n$ let t_{j} be arbitrary and $\gamma_{j} \equiv 0$. For $j=1, \ldots, \bar{n}$ let t_{j} and γ_{j} be the appropriate knots and basis functions such that the sum above equals the interpolating function $\phi_{I}(\cdot, t)$ (see (9)-(12)), i.e.,

$$
\left\|f-\sum_{j=1}^{n} c_{j} \phi\left(\cdot, t_{j}\right)\right\|_{W^{m, r}(\Omega)}=\left\|\int_{P} h(t)\left(\phi(\cdot, t)-\phi_{I}(\cdot, t)\right) d t\right\|_{W^{m, r}(\Omega)} .
$$

Note that this interpolating property also holds for all derivatives of ϕ with respect to x, since the interpolation is done with respect to t only and holds
independently of x. Applying (13) $(\beta=0)$ for $Y=H^{k}(P)$ and (14) $(\beta=0)$ for $Y=C^{k}(P)$ we obtain the estimates

$$
\begin{equation*}
\left\|f-\sum_{j=1}^{n} c_{j} \phi\left(\cdot, t_{j}\right)\right\|_{W^{m, r}(\Omega)} \leqslant \eta_{0} \tau^{-k}\|h\|_{L^{2}(P)}\|\phi\|_{W^{m, r}\left(\Omega, H^{k}(P)\right)} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|f-\sum_{j=1}^{n} c_{j} \phi\left(\cdot, t_{j}\right)\right\|_{W^{m, r}(\Omega)} \leqslant \bar{\eta}_{0} \tau^{-k}\|h\|_{L^{2}(P)}\|\phi\|_{W^{m, r}\left(\Omega, C^{k}(P)\right)} \tag{16}
\end{equation*}
$$

respectively. Now the assertion follows together with the fact that $\tau \sim n^{\frac{1}{p}}$.

Remark 2.1. The idea of choosing c_{j}, t_{j} and γ_{j} as in the prove above was found in a paper by Wahba [13] for one-dimensional P. This idea was extended to higher dimensions, i.e., $P \subset \mathbb{R}^{p}$.

The following extensions of Theorem 2.2 are obvious from the proof:

- If P is not rectangular but $\operatorname{supp}(h) \subset \bar{P} \subset P$ with \bar{P} rectangular, then the results are still valid.
- If $Y=C^{k}(P)$, the condition (5) for f with $h \in L^{1}(P)$ may be replaced by: f is such that there exists a uniformly bounded sequence h_{l} in $L^{1}(P)$ with

$$
\left\|f-\int_{P} h_{l}(t) \phi(\cdot, t) d t\right\|_{W^{m, r}(\Omega)} \rightarrow 0 \quad \text { as } \quad l \rightarrow \infty .
$$

- Condition (5) may be generalized to

$$
\begin{equation*}
f(x)=\sum_{|x| \leqslant \kappa} \int_{P} h_{\beta}(t) \frac{\partial^{|\beta|}}{\partial t^{\beta}} \phi(x, t) d t, \quad \kappa<k . \tag{17}
\end{equation*}
$$

If the functions γ_{j} are chosen such that for each β they coincide with the appropriate derivative of the basis functions $q_{j_{1} \ldots j_{p}}$ in $P_{l_{1} \cdots l_{p}}$, we obtain together with Proposition 2.1 the rates

$$
\inf _{g \in X_{n}}\|f-g\|_{W^{m, r}(\Omega)}=\mathcal{O}\left(n^{-\frac{(k-k)}{p}}\right)
$$

Finally, we want to mention that the rates above and in Theorem 2.2 decrease with increasing dimension p. There is no dimensionless term like $n^{-\frac{1}{2}}$ in (6) or Theorem 2.1. Since the estimates in the proof of Theorem 2.2 are based on a fixed choice of knots t_{j} this dependence on p is to be expected. We were not able to improve the rates for a possible optimal
choice of knots. However, since Proposition 2.1 is valid also for many other non-uniform choices of knots t_{j}, the rates in Theorem 2.2 are valid for many choices t_{j} (also non-optimal ones) if at least c_{j} is chosen optimally.

3. APPLICATIONS TO PERCEPTRONS

We now apply the results of the previous section to perceptrons with a single hidden layer, namely Ridge- constructions (cf. (2)) where σ is a function of sigmoidal form, i.e.,

$$
X_{n}=\left\{g=\sum_{j=1}^{n} c_{j} \sigma\left(a_{j}^{T} x+b_{j}\right): a_{j} \in A \subset \mathbb{R}^{d}, b_{j} \in B \subset \mathbb{R}\right\}
$$

and σ is piecewise continuous, monotonically increasing, and such that

$$
\lim _{t \rightarrow-\infty} \sigma(t)=0 \quad \text { and } \quad \lim _{t \rightarrow+\infty} \sigma(t)=1
$$

If σ is such that

$$
\sigma(t):= \begin{cases}1, & t>1 \tag{18}\\ p(t), & -1 \leqslant t \leqslant 1 \\ 0, & t<-1\end{cases}
$$

with p the unique polynomial of degree $2 k+1$ satisfying

$$
\begin{equation*}
p(-1)=0, p(1)=1, \text { and } p^{(l)}(-1)=0=p^{(l)}(1), \quad 1 \leqslant l \leqslant k, \tag{19}
\end{equation*}
$$

then $\sigma \in C^{k, 1}$ and $\sigma \in W^{k+1, \sigma}$ (see Fig. 1).

Example 3.1. Let us consider the special case of $k=0$, i.e.,

$$
\sigma(t):= \begin{cases}1, & t>1 \tag{20}\\ \frac{t+1}{2}, & -1 \leqslant t \leqslant 1 \\ 0, & t<-1\end{cases}
$$

and let $A:=X_{i=1}^{d}\left[-\bar{a}_{i}, \bar{a}_{i}\right]$ and $B:=[-\bar{b}, \bar{b}]$ with $\bar{a}_{i}>0$ and $\bar{b}>0$ such that

$$
\forall a \in A \quad \forall x \in \Omega:\left|a^{T} x\right| \leqslant \bar{b}-1 .
$$

FIG. 1. Function σ from (18) and (19) for $k=0,1,2,3$.

Since $\phi(x, a, b):=\sigma\left(a^{T} x+b\right)$ satisfies (7) with $m=0$ and $\rho=1$, Theorem 2.1 implies that

$$
\inf _{g \in X_{n}}\|f-g\|_{L^{2}(\Omega)}=\mathcal{O}\left(n^{-\frac{1}{2}-\frac{1}{d+1}}\right)
$$

if

$$
\begin{align*}
r c l f(x) & =\int_{A} \int_{-\bar{b}}^{\bar{b}} h(a, b) \sigma\left(a^{T} x+b\right) d b d a \\
& =\int_{A}\left[\int_{-1-a^{T} x}^{1-a^{T} x} h(a, b) \frac{1+a^{T} x+b}{2} d b+\int_{1-a^{T} x}^{\bar{b}} h(a, b) d b\right] d a \tag{21}
\end{align*}
$$

for some $h \in L^{\infty}(A \times B)$.

Example 3.2. We consider now the general case, where σ is defined by (18), (19), and where A and B are as in Example 3.1.

Since $\phi(x, a, b):=\sigma\left(a^{T} x+b\right)$ satisfies that $\phi \in W^{m, \infty}\left(\Omega, C^{k-m}(A \times B)\right)$ $(m \leqslant k)$ and $\phi \in W^{m, \infty}\left(\Omega, H^{k+1-m}(A \times B)\right) \quad(m \leqslant k+1)$, we may apply Theorem 2.2 to obtain

$$
\inf _{g \in X_{n}}\|f-g\|_{W^{m, r}(\Omega)}=\mathcal{O}\left(n^{-\frac{k-m}{d+1}}\right)
$$

if $f \in W^{m, r}(\Omega)$ satisfies

$$
\begin{equation*}
f(x)=\int_{A}\left[\int_{-1-a^{T} x}^{1-a^{T} x} h(a, b) p\left(a^{T} x+b\right) d b+\int_{1-a^{T} x}^{\bar{b}} h(a, b) d b\right] d a \tag{22}
\end{equation*}
$$

for some $h \in L^{1}(A \times B)$ and

$$
\inf _{g \in X_{n}}\|f-g\|_{W^{m, r}(\Omega)}=\mathcal{O}\left(n^{-\frac{k+1-m}{d+1}}\right)
$$

if $f \in W^{m, r}(\Omega)$ satisfies (22) for some $h \in L^{2}(A \times B)$ and $k+1-m>\frac{d+1}{2}$. Note that for $m=0$ and $k>\frac{d+1}{2}$ the rate above is better than the one in Example 3.1.

From both examples, we can see that the conditions (21) and (22) can be only satisfied if f is several times differentiable. We will now give a sufficient condition on f that guarantees (21):

Let $\varepsilon_{0}:=0$ and $\varepsilon_{n}:=\frac{\pi}{2}\left(4 n^{j}-3\right), n \in \mathbb{N}$, for some $j \in \mathbb{N}$ to be specified later, and let $\rho_{n}:=\varepsilon_{n} / \varepsilon_{n+1}$. We define the function h as

$$
\begin{equation*}
h(a, b)=\sum_{n=1}^{\infty}\left(\kappa_{n}(a) \cos \left(b \varepsilon_{n}\right)+\lambda_{n}(a) \sin \left(b \varepsilon_{n}\right)\right), \tag{23}
\end{equation*}
$$

where

$$
\begin{align*}
& \kappa_{n}(a):= \begin{cases}-(2 \pi)^{-\frac{d}{2}} \varepsilon_{n}^{3} \mathfrak{J} \hat{f}\left(a \varepsilon_{n}\right), & \text { if } a \in A \backslash \rho_{n-1} A, \\
0, & \text { else },\end{cases} \\
& \lambda_{n}(a):= \begin{cases}(2 \pi)^{-\frac{d}{2}} \varepsilon_{n}^{3} \mathfrak{R} \hat{f}\left(a \varepsilon_{n}\right), & \text { if } a \in A \backslash \rho_{n-1} A, \\
0, & \text { else. }\end{cases} \tag{24}
\end{align*}
$$

Note that, due to the definition of κ_{n} and λ_{n}, the sum in (23) will be almost always finite. \mathfrak{I} and \mathfrak{R} denote the imaginary and real part, respectively. The definition of κ_{n} and λ_{n} seem rather technical. It will become clear from the proofs of Lemma 3.1 and Proposition 3.1. With \hat{f} we denote the Fourier transform of any function \tilde{f} satisfying that $\tilde{f}=f$ in Ω.

Lemma 3.1. Let f be such that $\left(1+|\cdot|^{3+\alpha-1 / p}\right) \hat{f}(\cdot) \in L^{p}\left(\mathbb{R}^{d}\right)$, where \hat{f} is as above and $\alpha=0$ for $p=1$ and $\alpha>0$ for $1<p \leqslant \infty$, and let A and B be as in Example 3.1. Then it holds for h defined by (23) and (24) with $j \in \mathbb{N}$ sufficiently large (see the definition of ε_{n}) that

$$
h \in L^{p}(A \times B) .
$$

Proof. Let $p<\infty$. Then we obtain with (23) and (24) that

$$
\begin{aligned}
\int_{A} \int_{-\bar{b}}^{\bar{b}} & |h(a, b)|^{p} d b d a \\
\quad & =\sum_{k=1}^{\infty} \int_{\rho_{k} A \backslash \rho_{k-1} A} \int_{-\bar{b}}^{\bar{b}}\left|\sum_{n=1}^{k}\left(\kappa_{n}(a) \cos \left(b \varepsilon_{n}\right)+\lambda_{n}(a) \sin \left(b \varepsilon_{n}\right)\right)\right|^{p} d b d a \\
& \leqslant 2 \bar{b} \sum_{k=1}^{\infty} \int_{\rho_{k} A \backslash \rho_{k-1} A}\left(\sum_{n=1}^{k}\left(\left|\kappa_{n}(a)\right|+\left|\lambda_{n}(a)\right|\right)\right)^{p} d a \\
& =\mathcal{O}\left(\sum_{k=1}^{\infty} \int_{\rho_{k} A \backslash \rho_{k-1} A}\left(\sum_{n=1}^{k} \varepsilon_{n}^{3}\left|\hat{f}\left(a \varepsilon_{n}\right)\right|\right)^{p} d a\right) .
\end{aligned}
$$

This together with the estimate

$$
\left(\sum_{n=1}^{k} \varepsilon_{n}^{3}\left|\hat{f}\left(a \varepsilon_{n}\right)\right|\right)^{p} \leqslant\left(\sum_{n=1}^{k} \varepsilon_{n}^{(3+\alpha) p}\left|\hat{f}\left(a \varepsilon_{n}\right)\right|^{p}\right)\left(\sum_{n=1}^{k} \varepsilon_{n}^{-\frac{\alpha p}{p-1}}\right)^{p-1}
$$

and the fact that

$$
\sum_{n=1}^{\infty} \varepsilon_{n}^{-\frac{\alpha p}{p-1}}<\infty
$$

if $\alpha>0, p>1$, and $1>\frac{p-1}{\alpha p}$, implies that

$$
\begin{aligned}
\int_{A} \int_{-\bar{b}}^{\bar{b}}|h(a, b)|^{p} d b d a & =\mathcal{O}\left(\sum_{n=1}^{\infty} \int_{A \backslash \rho_{n-1} A} \varepsilon_{n}^{(3+\alpha) p}\left|\hat{f}\left(a \varepsilon_{n}\right)\right|^{p} d a\right) \\
& =\mathcal{O}\left(\sum_{n=1}^{\infty} \int_{\varepsilon_{n} A \backslash \varepsilon_{n-1} A} \varepsilon_{n}^{(3+\alpha) p-1}|\hat{f}(z)|^{p} d z\right)
\end{aligned}
$$

if j is sufficiently large and $\alpha=0$ for $p=1$ and $\alpha>0$ for $p>1$ which we assume to hold in the following. Since

$$
\exists C>0 \forall z \in \varepsilon_{n} A \backslash \varepsilon_{n-1} A: \varepsilon_{n}^{(3+\alpha) p-1} \leqslant C\left(1+|z|^{3+\alpha-\frac{1}{p}}\right)^{p},
$$

we finally obtain that

$$
\begin{aligned}
\int_{A} \int_{-\bar{b}}^{\bar{b}}|h(a, b)|^{p} d b d a & =\mathcal{O}\left(\sum_{n=1}^{\infty} \int_{\varepsilon_{n} A \backslash \varepsilon_{n-1} A}\left(1+|z|^{3+\alpha-\frac{1}{p}}\right)^{p}|\hat{f}(z)|^{p} d z\right) \\
& =\mathcal{O}\left(\int_{\mathbb{R}^{d}}\left(1+|z|^{3+\alpha-\frac{1}{\bar{p}}}\right)^{p}|\hat{f}(z)|^{p} d z\right) .
\end{aligned}
$$

This proves the assertion for $p<\infty$.
Let us now consider the case $p=\infty$: We assume that $\alpha>0$ and that $j>\frac{1}{\alpha}$. Then we obtain for all $a \in \rho_{k} A \backslash \rho_{k-1} A$ that

$$
\begin{aligned}
|h(a, b)| & \leqslant \sum_{n=1}^{k}\left(\left|\kappa_{n}(a)\right|+\left|\lambda_{n}(a)\right|\right) \\
& =\mathcal{O}\left(\sum_{n=1}^{k} \varepsilon_{n}^{3}\left|\hat{f}\left(a \varepsilon_{n}\right)\right|\right) \\
& =\mathcal{O}\left(\sum_{n=1}^{k}\left(1+\left(|a| \varepsilon_{n}\right)^{3+\alpha}\right) \varepsilon_{n}^{-\alpha}\left|\hat{f}\left(a \varepsilon_{n}\right)\right|\right) \\
& =\mathcal{O}\left(\left\|\left(1+|\cdot|^{3+\alpha}\right) \hat{f}(\cdot)\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}\right) .
\end{aligned}
$$

This proves the assertion for $p=\infty$.
Proposition 3.1. Let f, A, and B satisfy the conditions in Lemma 3.1. Moreover, let f be such that $(1+|\cdot|) \hat{f}(\cdot) \in L^{1}\left(\mathbb{R}^{d}\right)$. Then f has an integral representation (21) for some $h \in L^{p}(A \times B)$.

Proof. With the special choice of h as in (23) and (24) we know from Lemma 3.1 that $h \in L^{p}(A \times B)$. We will now show that

$$
\begin{aligned}
g(x):=\int_{A}\left[\int_{-1-a^{T} x}^{1-a^{T} x} h(a, b)\right. & \left.\frac{1+a^{T} x+b}{2} d b+\int_{1-a^{T} x}^{\bar{b}} h(a, b) d b\right] d a \\
=\sum_{k=1}^{\infty} \int_{\rho_{k} A \backslash \rho_{k-1} A} \sum_{n=1}^{k} & {\left[\kappa _ { n } (a) \left(\int_{-1-a^{T} x}^{1-a^{T} x} \cos \left(b \varepsilon_{n}\right) \frac{1+a^{T} x+b}{2} d b\right.\right.} \\
& \left.+\int_{1-a^{T} x}^{\bar{b}} \cos \left(b \varepsilon_{n}\right) d b\right) \\
& +\lambda_{n}(a)\left(\int_{-1-a^{T} x}^{1-a^{T} x} \sin \left(b \varepsilon_{n}\right) \frac{1+a^{T} x+b}{2} d b\right. \\
& \left.\left.+\int_{1-a^{T} x}^{\bar{b}} \sin \left(b \varepsilon_{n}\right) d t\right)\right] d a
\end{aligned}
$$

is identical to f up to a constant. The integrals with respect to b may be calculated analytically. Together with $\sin \left(\varepsilon_{n}\right)=1$ this yields that

$$
\begin{aligned}
g(x)= & \sum_{k=1}^{\infty} \int_{\rho_{k} A \backslash \rho_{k-1} A} \sum_{n=1}^{k}\left[\kappa_{n}(a)\left(\varepsilon_{n}^{-1} \sin \left(\bar{b} \varepsilon_{n}\right)+\varepsilon_{n}^{-2} \sin \left(a^{T} x \varepsilon_{n}\right)\right)\right. \\
& \left.+\lambda_{n}(a)\left(-\varepsilon_{n}^{-1} \cos \left(\bar{b} \varepsilon_{n}\right)+\varepsilon_{n}^{-2} \cos \left(a^{T} x \varepsilon_{n}\right)\right)\right] d a \\
= & (2 \pi)^{-\frac{d}{2}} \sum_{n=1}^{\infty} \int_{\varepsilon_{n} A \backslash \varepsilon_{n-1} A}\left(\mathfrak{R} \hat{f}(z) \cos \left(z^{T} x\right)-\mathfrak{J} \hat{f}(z) \sin \left(z^{T} x\right)\right) d z \\
& -(2 \pi)^{-\frac{d}{2}} \sum_{n=1}^{\infty} \int_{\varepsilon_{n} A \backslash \varepsilon_{n-1} A} \varepsilon_{n}\left(\mathfrak{R} \hat{f}(z) \cos \left(\bar{b} \varepsilon_{n}\right)+\mathfrak{J} \hat{f}(z) \sin \left(\bar{b} \varepsilon_{n}\right)\right) d z .
\end{aligned}
$$

The second term above is a constant, since $(1+|\cdot|) \hat{f}(\cdot) \in L^{1}\left(\mathbb{R}^{d}\right)$. (The proof is similar to the one in Lemma 3.1.) We denote this constant by C in the following. Hence, we obtain that

$$
\begin{aligned}
g(x) & =(2 \pi)^{-\frac{d}{2}} \int_{\mathbb{R}^{d}}\left(\mathfrak{R} \hat{f}(z) \cos \left(z^{T} x\right)-\mathfrak{J} \hat{f}(z) \sin \left(z^{T} x\right)\right) d z+C \\
& =(2 \pi)^{-\frac{d}{2}} \int_{\mathbb{R}^{d}} \hat{f}(z) e^{i z^{T} x} d z+C \\
& =f(x)+C .
\end{aligned}
$$

It remains to be shown that the constant function satisfies (21) for some $\bar{h} \in L^{\infty}(A \times B)$. Let $\bar{h}(a, b):=\frac{C}{\bar{b}|A|}$. Then we obtain that

$$
\begin{gathered}
\int_{A}\left[\int_{-1-a^{T} x}^{1-a^{T} x} \bar{h}(a, b) \frac{1+a^{T} x+b}{2} d b+\int_{1-a^{T} x}^{\bar{b}} \bar{h}(a, b) d b\right] d a \\
\quad=\frac{C}{\bar{b}|A|} \int_{A}\left(\bar{b}+a^{T} x\right) d a=C,
\end{gathered}
$$

where we used the fact that

$$
\int_{A} a^{T} x d a=0
$$

for the special choice of A (see Example 3.1).
Remark 3.1. For the case $p=1$, the condition $(1+|\cdot|) \hat{f}(\cdot) \in L^{1}\left(\mathbb{R}^{d}\right)$ in Proposition 3.1 is superfluous, since it is implied by condition $\left(1+|\cdot|^{2}\right) \hat{f}(\cdot) \in$ $L^{1}\left(\mathbb{R}^{d}\right)$ in Lemma 3.1. This sufficient condition for (21) actually means that f has a C^{2}-extension into the exterior of Ω. On the other hand, it is easy to
see that for condition (21) to hold it is necessary that f is two-times weakly differentiable.

For the case $p=2$, the conditions in Proposition 3.1 mean that f has a C^{1}-extension into the exterior of Ω and that f may be extended to a function in $H^{\frac{5}{2}+\alpha}\left(\mathbb{R}^{d}\right)$ for some $\alpha>0$.

For the general case of perceptrons ($k \in \mathbb{N}$) in Example 3.2, one can prove a similar result to Proposition 3.1 by constructing the function h in Lemma 3.1 similarly to (23) and (24). The sufficient conditions for (22) to hold are:

$$
(1+|\cdot|) \hat{f}(\cdot) \in L^{1}\left(\mathbb{R}^{d}\right) \quad \text { and } \quad\left(1+|\cdot|^{3+k+\alpha-\frac{1}{p}}\right) \hat{f}(\cdot) \in L^{p}\left(\mathbb{R}^{d}\right) .
$$

It was shown in [1] that $(1+|\cdot|) \hat{f}(\cdot) \in L^{1}\left(\mathbb{R}^{d}\right)$ is sufficient for the rate

$$
\inf _{g \in X_{n}}\|f-g\|_{L^{2}(\Omega)}=\mathcal{O}\left(n^{-1 / 2}\right)
$$

if $P=\mathbb{R}^{d+1}$. It is obvious that better rates can only be obtained under stronger conditions on f. Unfortunately, the rates in Theorem 2.2 are only better than $\mathcal{O}\left(n^{-\frac{1}{2}}\right)$ if k is sufficiently large depending on the dimension d. On the other hand, the rates in Theorem 2.2 are also valid for nonoptimally chosen $\left\{t_{j}\right\}$ (compare Remark 2.1).

REFERENCES

1. A. R. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE Trans. Inform. Theory 39 (1993), 930-945.
2. C. M. Bishop, "Neural Networks for Pattern Recognition," Clarendon Press, Oxford, 1995.
3. M. Burger and H. W. Engl, Training neural networks with noisy data as an ill-posed problem, Adv. Comput. Math. (2000), to appear.
4. R. A. DeVore, K. I. Oskolkov, and P. P. Petrushev, Approximation by feed-forward neural networks, Ann. Numer. Math. 4 (1997), 261-287.
5. H. W. Engl, M. Hanke, and A. Neubauer, "Regularization of Inverse Problems," Kluwer, Dordrecht, 1996.
6. K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators, Neural Networks 2 (1989), 359-366.
7. H. N. Mhaskar, Approximation properties of a multilayered feed-forward artificial neural network, Adv. Comput. Math. 1 (1993), 61-80.
8. H. N. Mhaskar and C. A. Miccheli, Degree of approximation by neural and translation networks with a single hidden layer, Adv. Appl. Math. 16 (1995), 151-183.
9. P. Niyogi and F. Girosi, Generalization bounds for function approximation from scattered noisy data, Adv. Comput. Math. 10 (1999), 51-80.
10. P. P. Petrushev, Approximation by ridge functions and neural networks, SIAM J. Math. Anal. 30 (1999), 155-189.
11. R. Schaback, Approximation by radial basis functions with finitely many centers, Constr. Appr. 12 (1996), 331-340.
12. G. Strang and G. J. Fix, "An Analysis of the Finite Element Method," Prentice-Hall, Englewood Cliffs, NJ, 1973.
13. G. Wahba, Convergence rates of certain approximate solutions to Fredholm integral equations of the first kind, J. Approx. Theory 7 (1973), 167-185.

[^0]: ${ }^{1}$ Supported by the Austrian Science Foundation under Grant SFB F013/1308.

