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In this paper we prove convergence rates for the problem of approximating
functions f by neural networks and similar constructions. We show that the rates
are the better the smoother the activation functions are, provided that f satisfies an
integral representation. We give error bounds not only in Hilbert spaces but also in
general Sobolev spaces W™ ’(£2). Finally, we apply our results to a class of percep-
trons and present a sufficient smoothness condition on f guaranteeing the integral
representation.  © 2001 Academic Press
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1. INTRODUCTION

The aim of this paper is to find error bounds for the approximation of
functions by feed-forward networks with a single hidden layer and a linear
output layer, which can be written as

n

[(x) =3 ¢b(x, 1)), )

ji=1

where ¢; € R and ¢; € P c R? are parameters to be determined.
An important special case of (1) are so-called Ridge-constructions, i.c.,

n

fu(x) =Y, cjo(a] x+b)). #))

j=1

The interest in such networks grew, since Hornik et al. [6] showed that
functions of the form (2) are dense in C(Q), if ¢ is a function of sigmoidal
form. An other special case are radial basis function networks, where

¢(x, 1) =Y(llx—1l)) (cf. [11]).
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We consider the problem of approximating a function feW™'(Q),
where W™ "(R2) denote the usual Sobolev spaces and £ is a (not necessarily
bounded) domain in R?. This problem can be written in the abstract form

inf || f—gllx. (€)

geX,

where X = W™ "(2) and X, denotes the set of all functions of form (1), i.e.,

an{gz 21 c;(x, tj):tjePc[RP,cje[R}. 4

j=

¢ is assumed smooth enough so that X, = X; P is a (usually bounded)
domain.

Usually, the convergence of solutions of (3) if they exist (note that X, is
not a finite-dimensional subspace of X) is arbitrarily slow, since the
approximation problem is asymptotically ill-posed, i.e., arbitrarily small
errors in the observation can lead to arbitrarily large errors in the approx-
imation as n— oo (cf., e.g., [2, 3]). It was shown in [3] that the set of
functions to which networks of the form (1) converge is just the closure of
the range of the integral operator

K:L¥(P)—> X, h L h(t) ¢( -, £) dt.

Rates are usually only obtained under additional conditions on f (cf., e.g.,
[5]). A natural condition seems to be that f is in the range of the above
operator, i.e.,

FGy=[ ht) d(x. 1) dr, s)

where 4 is allowed to be in L'(P) if ¢ is smooth enough. It was shown in
[9] that under this condition the rate

inf ||f —gll20) = O(n ™) 6)

gex,

is obtained if ¢ is a continuous function (see also [7, 8]). We improve this
result under additional smoothness assumptions on the basis function ¢ in
the next section with estimates also in H™(Q) = W™?(Q). Moreover, we
will give error bounds in W™ "(Q) that depend on the dimension p (cf. (4)),
where the analysis is based on finite-element theory. In Section 3, we apply
the results to perceptrons and give sufficient conditions on f for condition
(5) to hold. Similar results on the unit circle have been obtained in [4, 10].
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2. ERROR BOUNDS

An inspection of the proof of (6) in [9] shows that the result can be
improved if the activation function ¢ is Hoélder continuous. Moreover,
rates can be obtained in H™(Q):

THEOREM 2.1. Let X, be defined as in (4) with P < R? compact and ¢
such that

”¢('9t)_¢('7s)”Hm(Q) <C||I—S||p, pE(O, 1]7C>07m€ NO' (7)

Moreover, let f € H™(Q2) satisfy (5) with h € L*(P). Then we obtain the rate

. _1_»r
inf ||f —gllgma = O(n75).

gexX,

Proof. Let P={te P:h(t>0} (note that P is unique up to a set of
measure zero) and 7:=[5]. Since P is bounded, it is possible to find
bounded measurable sets P; such that

P=UP,  P\P=U B PRaP={hLi#]
j=1 j=n+l1 1 (8)
1
diam(P;) = O(n"7), |P| =0 <;> .
We now define coefficients
cj:=| h(t)dt
P
and probability measures
1
- h(t)’ te Pj:
u(t) ;=46 for ¢; # 0 and y; is arbitrary for ¢; = 0.
0, otherwise,

As a direct consequence of our construction we have that

h=Y cu;.
j=1

ji=
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Furthermore, we consider the variables ¢; € P as random variables dis-
tributed with probability distribution x;. The expected value of z(z,, ..., ¢,)
is defined as

Elz]i=[ oo [ 2t () py0) dity - dt

With ¢; and y; as above and f as in (5) we obtain using Fubini’s theorem

that
2
H"(Q) ]

=2 5 6 (£, dCapar)

n

+ Z CiCj <fpﬂi(ti)¢("ti)dtiafpﬂj(tj)¢("tj)dtj>

i#j=1 H™(RQ)

+3 ¢ m@) W t)lima dt)
j=1 7P

= “ L [h(t)— il (1) } o(-, 1) dt

H™(Q)

2
m-Q)i|'

+ %, [ [, mO WOl di=| [ o o 0]
Since the first term on the right hand side vanishes, we may conclude that
gl
-3 Tl w0 (S ) ar
(] w05 e t)dt)] x
-3 3 [ |] wo(], u,(t)< e, 1)

j=1 o] <m
>ds> dt]dx.




APPROXIMATION WITH NEURAL NETWORKS 239

Noting that 2 € L*(P) and (8) imply that ¢; = 0(3), we now obtain together
with (7), (8), and the Cauchy—Schwarz inequality that

|- Z o],
éc ) f “ /t](t)f u,(s)( e

|| <m

» 1)

o

—— ¢(x, s)> ds dt] dx
0x*

=idemLm®wuwwumw@mm
= @(n-n_2~n‘27p) = (O(n_l‘zf .

Therefore, there exists a set of elements t_, € P such that

inf | f— g”H"’(Q) Hf Z cd)( > J

geX,

m

(el 0w

= 0(n579),

2 1/2
H™(Q) ])

where c; is as above. ||

We think that the proposition above is also true if 4 e L?(P). However,
the choice of the subsets P; in (8) has to be more tricky, since ¢; = 0(3) will
no longer hold, in general.

We will now turn to other estimates in spaces W™'(£2). The error
bounds will depend on the dimension p of P = R”. The proofs are based on
the following results from finite-element theory (see [12]):

Let

pi— Di
[p,»+ . l,,p,+—(l+1)} teN.

Then, obviously
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Moreover, we define for some k e N

: bi—pi .
byogy =Gy ts oo i) ERE 1y =pit—
®
Jji=0, ..., krt.
Then for all kl; <v; < k(l; +1) there exists a unique polynomial function
G-, € Okctyo, 1= {q(2) = Z le»«<jpt{l - 'tf,” :0<j; <k, (10)
I<i<p,t=(t,...t,)€P .}
satisfying
p .
qvl---vp(tjl---jp) = 1_[ Oujis Kl < vy Jiy < k(I +1). (11
i=1
The function u,, defined by
u1|1>,1...,p = Z u(tjl"'jp) Djr > (12)

Ky < i <k +1)
interpolates u € C(P) at the knots #;,...;,, 0<j; <k, 1 <i<p. Note that
u; € C(P) n H'(P).

PROPOSITION 2.1. Let P < R? be rectangular. If ue H*(P) with k>2,
then there is a constant n,>0 such that for all multiindices [ with
|Bl =K <k and foralll; {0, ...,t—1},i=1, ..., p, it holds that

1D (u—uplzw, .,y <1t~ 7 lutea, - (13)

If ue CX(P), then there is a constant i, > 0 such that for all multiindices f
with || =k <k and for all I, € {0, ...,t—1},i =1, ..., p, it holds that,

1D (u—u)li=a, .., ) <Az~ max [|D7ull =, ..,)- (14)

Proof. The proof follows with Theorem 3.1 and Theorem 3.3 in [12].
|
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For our main result we need the following types of smoothness of
¢: e W™ (Q,Y) withY = H*(P) or Y = C*(P) and norms

< lo| <m

max €sS sup

o] <m xeQ

1
>, if 1<r<oo,

”¢"W"’"(Q, Y) - = on
" ¢(x,)H s if r=o0.
0x Y

THEOREM 2.2. Let X, be defined as in (4) with P < R? bounded and
rectangular and let ¢ e W™'(Q,Y) with Y = H¥P), k > ;, or Y =CHP).
Moreover, let feW™"(Q) satisfy (5) with he LX(P) if Y = H*(P) and
he LY (P) if Y = C*(P). Then we obtain the rate

. _k
inf || f —glwmr e = O(n>).
geX,
Proof. If we choose c; as
¢ = L h(t)y(t)ydt,  y;€ L(P),
with 4 as in (5), then we obtain that

lr=3 coc.0)

W Q)

= ” L) h(t) <¢(., 1) — i y:(8) ¢(-, t,.)> dt

W)

Let us define 7:= ([#n'/?]—1)/k and 7 := (kt+1)? < n. Then we choose ¢
and y; as follows: For j=7+1,...,n let #; be arbitrary and y; =0. For
j=1,...,7@let t; and y; be the appropriate knots and basis functions such
that the sum above equals the interpolating function ¢;(-, ¢) (see (9)-(12)),
ie.,

Hf_ Z: cj¢('a tj)

=|[, o o-dic oy ar

w™(Q) ’

Note that this interpolating property also holds for all derivatives of ¢ with
respect to x, since the interpolation is done with respect to ¢ only and holds
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independently of x. Applying (13) (8 =0) for Y = H¥(P) and (14) (8 =0)
for Y = C¥(P) we obtain the estimates

lr=3 coc.0)

° <t * I4ll2cey Bllwmrq, ey (15)

and

Hf_ z: cj¢('s tj)

Q) <At * I4ll 2cey Bllwmra, ey (16)

respectively. Now the assertion follows together with the fact that 7 ~ n.

|
Remark 2.1. The idea of choosing c;, ¢, and y; as in the prove above
was found in a paper by Wahba [ 13] for one-dimensional P. This idea was
extended to higher dimensions, i.e., P = R?.

The following extensions of Theorem 2.2 are obvious from the proof:

« If P is not rectangular but supp(%) = P = P with P rectangular, then
the results are still valid.

e If Y = CX(P), the condition (5) for f with 4 e L'(P) may be replaced
by: f is such that there exists a uniformly bounded sequence /4, in L!(P)
with

-0 as [ —o0.
Wm‘r(.Q)

Hf— [ m@ o oy di

e Condition (5) may be generalized to

fx=Y f h,,(t) ,,¢(x Hdt, K<k (17)

lol <%

If the functions y; are chosen such that for each f they coincide with the
appropriate derivative of the basis functions g; ..; in P,.,, we obtain
together with Proposition 2.1 the rates

inf || f —gllymr e = O(n~

geX,

'jp

(k—x)

).

Finally, we want to mention that the rates above and in Theorem 2.2
decrease with increasing dimension p. There is no dimensionless term like
n~?in (6) or Theorem 2.1. Since the estimates in the proof of Theorem 2.2
are based on a fixed choice of knots ¢; this dependence on p is to be
expected. We were not able to improve the rates for a possible optimal
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choice of knots. However, since Proposition 2.1 is valid also for many
other non-uniform choices of knots #;, the rates in Theorem 2.2 are
valid for many choices #; (also non-optimal ones) if at least c; is chosen
optimally.

3. APPLICATIONS TO PERCEPTRONS

We now apply the results of the previous section to perceptrons with
a single hidden layer, namely Ridge- constructions (cf. (2)) where ¢ is a
function of sigmoidal form, i.e.,

X, ={g= Y colalx+b;):a,e AcRY, bjeBc[R}

j=1
and ¢ is piecewise continuous, monotonically increasing, and such that

lim o(z)=0 and lim o(z)=1.

t—> —0 t— 400
If o is such that
1, t>1,
a(t) :=< p(v), —-1<r<1, (18)
0, t< —1,

with p the unique polynomial of degree 2k + 1 satisfying
p(=1)=0,p(1)=1,and p(—1)=0=p"(1), 1<I<k, (19

then ¢ € C*! and o € W**!-? (see Fig. 1).

ExampLE 3.1. Let us consider the special case of k=0, i.e.,

1, t>1,
(1

o(t) := % _1<e<l, (20)
0, t< —1,

d - - —
andlet A:= X [—a;,a;] and B:=[—b, b] with @, > 0 and b > 0 such that
i=1

Vac A VxeQ:|a"x|<b—1.
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T T T

FIG. 1. Function ¢ from (18) and (19) for k=0, 1, 2, 3.

Since @(x, a, b) :=a(a"x+b) satisfies (7) with m=0 and p=1, Theo-
rem 2.1 implies that

: S
inf || f—gllzxg) = O(n™"71)

geX,
if
relf(x) = L j _';5 h(a, b) o(a’x+b) db da
-/ [ f:_ h(a, b) ”“—;"“’dm f_arx h(a, b) db]da @)
for some 2 e L*(A4 x B).

ExaMpPLE 3.2. We consider now the general case, where o is defined by
(18), (19), and where 4 and B are as in Example 3.1.
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Since @(x, a, b) :=a(a"x+b) satisfies that ¢eW™=(Q, C*""(A4x B))
(m<k) and geW™™(Q, H*'""(4x B)) (m<k+1), we may apply
Theorem 2.2 to obtain

. _k=m
inf || f —gllymrq = O(n™)
geXy

if £ e W™"(Q) satisfies
1-a”.
1—

f(x)=L[ L h(a, b) p(ax+b) db+ L[i,,rx h(a, b) db]da 22)

for some 2 e L'(Ax B) and
: _ktlom
inf || f —glwmr o =0(n™ =1)
geX,

if feW™"(Q) satisfies (22) for some he L*(Ax B) and k+1—m> %L
Note that for m=0 and k >“%}' the rate above is better than the one in
Example 3.1.

From both examples, we can see that the conditions (21) and (22) can be
only satisfied if f is several times differentiable. We will now give a suffi-
cient condition on f that guarantees (21):

Let ¢ :=0 and ¢,:=%(4n’—3),ne N, for some je N to be specified
later, and let p, :=¢,/¢,,,. We define the function # as

h(a, b) = i (xc,(a) cos(be,)+ 1,(a) sin(be,)), (23)

n=1
where

— Q)2 e3f(ae,), if aeA\p, A,
K,(a) :={

0, else,
4 g a (24)
@ {(271)‘283‘.Rf(a8n), if aed\p, A,
L(a) =
0, else.

Note that, due to the definition of x, and 4,, the sum in (23) will be almost
always finite. 3 and R denote the imaginary and real part, respectively.
The definition of x, and A, seem rather technical. It will become clear from
the proofs of Lemma 3.1 and Proposition 3.1. With f we denote the
Fourier transform of any function f satisfying that = f in Q.
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LemMMA 3.1. Let f be such that (1+|->**~7) £(-) e L%(R?), where f is
as above and =0 for p=1 and a >0 for 1 < p< o0, and let A and B be as
in Example 3.1. Then it holds for h defined by (23) and (24) with je N
sufficiently large (see the definition of ¢,) that
he L?(AXx B).

Proof. Let p <oo. Then we obtain with (23) and (24) that

L f:, |h(a, b)|” db da

db da

A\ pr—14 J.

2% f T ( ¥ (i, (a)|+|zn(a)|)>

¢ < kijl ijA\Pk—lA < 2::1 8’3’ |f(a8n)|>p da) .

This together with the estimate

k B » k B k - -1
(2 alf) <( 3 @ ifa)r)( 3 o)

n=1

and the fact that

L ﬂ’b Ih(a, b)|1’dbda=0< i j

A\pp_14

et | f(ae,)I” da>

= 3 G+a)p—1 |7 »
0< Z J‘snA\EnflA En If(Z)I dZ>

n=1

if j is sufficiently large and a =0 for p=1 and a« >0 for p > 1 which we
assume to hold in the following. Since

IC>0Vzee,A\e,_A: 071 <C(1+ 2> )2,
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we finally obtain that

J, I e b v da= < Y[ Py |f<z>|sz>

n=1"end\en_14

=0 < [, R 1f @) dz) :

This proves the assertion for p < 0.
Let us now consider the case p = co: We assume that « > 0 and that j > 1.

Then we obtain for all a € p, A\ p,_, A that
|h(a, b)| < Z] (Icn(@)| + |4, (a)])
k A
-o( X & 1fas))
k
—o( T (+Gaar e 1))
=0(|(1+]- |3+“) f( : )||L°°(R"))-

This proves the assertion for p=o00. ||

ProrosiTioN 3.1. Let f, A, and BAsatisfy the conditions in Lemma 3.1.
Moreover, let f be such that (1+|-]) f(-) e L'(RY). Then f has an integral
representation (21) for some he L?(A x B).

Proof. With the special choice of /4 as in (23) and (24) we know from
Lemma 3.1 that 2 € L?(A4 x B). We will now show that

1-a"x 1 T b b
s =], [ s G ey

1-a x

© k 1—aTy 1 + aTx + b
B be,) ————db
kgl J‘pkA\pkflA Z |:K"(a) <J1aTx COS( gn) 2

n=1

b
+J . cos(be,) db>
1-a"x

1-a’x 1 T b
+,(a) < [ sin(be,,)$db

b
+ j ] sin(bsn)dt>]da
1—a x
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is identical to f up to a constant. The integrals with respect to b may be
calculated analytically. Together with sin(e,) = 1 this yields that

g(x)=§: L S [r(a@)(e;" sin(Be,) + £ sin(a"xz,))

kA\pk—14 =1

+A,(a)(—e," cos(be,)+e,? cos(a’xe,))] da

=) f f (RF(2) cos(z™x) — 3f(z) sin(z"x)) dz

n=1 Yend\en_14

— Q) f &,(Rf(z) cos(be,) + 31 (2) sin(be,)) dz.

n=1vend\&y_14

The second term above is a constant, since (1+]|-]) f(-) e L'(R?). (The
proof is similar to the one in Lemma 3.1.) We denote this constant by C in
the following. Hence, we obtain that

o(x) = (2n)~2 j L3 7(2) cos(z™x)— 37 (z) sin(z"x)) dz+C

=) J @ e dz+C
= f(x)+C.

It remains to be shown that the constant function satisfies (21) for some
he L*(Ax B). Let h(a, b) := EL Then we obtain that

4]

—a’x _ 1 T b b _
j “1 ) h(a,b)ﬂdb+ ’ . h(a,b)a’b]da
A

—1—a'x 2 l-a' x

C _
=——| (b+a"x)da=C
b|A|L(+ax) a ,
where we used the fact that
j a’™xda=0
A

for the special choice of 4 (see Example 3.1). |

Remark 3.1. For the case p = 1, the condition (1+|-|) £(-) e L'(R?) in
Proposition 3.1 is superfluous, since it is implied by condition (14| - |?) f(-) €
L'(R%) in Lemma 3.1. This sufficient condition for (21) actually means that
f has a C*-extension into the exterior of Q. On the other hand, it is easy to
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see that for condition (21) to hold it is necessary that f is two-times weakly
differentiable.

For the case p =2, the conditions in Proposition 3.1 mean that f has a
Cl—extensgon into the exterior of 2 and that f may be extended to a func-
tion in H>"*(R?) for some a > 0.

For the general case of perceptrons (ke N) in Example 3.2, one can
prove a similar result to Proposition 3.1 by constructing the function /4 in
Lemma 3.1 similarly to (23) and (24). The sufficient conditions for (22) to
hold are:

(A+]-Df()eL'(RY)  and  (1+]-[*****75) f(-) e L (RY).
It was shown in [1] that (1+]-]) £(-) € L'(R?) is sufficient for the rate

inf ||f —gllrie = O(n"")

gex,

if P=R“! It is obvious that better rates can only be obtained under
stronger condltlons on f. Unfortunately, the rates in Theorem 2.2 are only
better than O(n~ 2) if k is sufficiently large depending on the dimension d.
On the other hand, the rates in Theorem 2.2 are also valid for non-
optimally chosen {¢;} (compare Remark 2.1).
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